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We apply the Rayleigh method to derive a formulation yielding the effective dielectric tensor of a periodic
composite consisting of an array of elliptical cylinders placed in a matrix of unit dielectric constant. We
consider three types of composites having this structure: dilute noncritical, dilute critical, and concentrated
composites. For dilute noncritical composites we comment on our result in relation to the competing forms of
the Maxwell-Garnett formula, which have been proposed previously. We also discuss the case of dilute critical
and concentrated composites of solid elliptical inclusions, and comment on geometrical constraints on the
validity of the Rayleigh equations.@S1063-651X~96!00908-7#

PACS number~s!: 03.50.De, 41.20.Cv, 78.20.Bh, 78.20.Ci

I. INTRODUCTION

Analysis concerning the transport properties of inhomo-
geneous systems is of fundamental theoretical interest, but
also plays an important role in optimal designs of industrial
products. For example, many modern structural materials de-
pend on the use of composite materials. It is also possible to
produce columnar thin films which are highly conducting. In
particular, thin films containing metal and voids in an ob-
lique columnar structure exhibit angular dependent optical
properties@1,2#. By forming the columns at an angle and
coating them with metal, highly conducting elliptical cylin-
ders can be produced. Such a capacitive grid can manifest
strong angular selectivity as a result of the basic asymmetry
of the component ellipses. Materials with such characteris-
tics may have uses in filters, windows in residential and com-
mercial buildings, and car windscreens@1–3#.

Here, using the terminology for the calculation of the di-
electric constant, we analyze the transport properties of a
two-dimensional two-phase composite material consisting of
a rectangular array of elliptical cylinders placed in a matrix
of unit dielectric constant~with the principal axes of the
ellipses coinciding with the periodicity axes of the array!. To
obtain the effective dielectric constant of the array we use the
method devised by Lord Rayleigh@4#, for rectangular arrays
of circular cylinders. Rayleigh’s method has been extended
to include an arbitrary number of terms and applied in stud-
ies of arrays of cylinders@5–7#, arrays of coated cylinders
@8–10#, lattices of spheres@11,12#, and lattices of coated
spheres@10#. This method has also been used in problems of
elastostatics@13,14#. Note that the same formalism and the
results are immediately applicable to many other transport
coefficients including those listed by Batchelor@15#; e.g.,
thermal conductivity, electrical conductivity, magnetic per-
meability, mobility, permeability of a porous medium,
modulus of torsion in a cylindrical geometry, and effective
mass in a bubbly flow.

The technique used in this paper represents an extension
of Rayleigh’s method to noncircular boundaries of the inclu-
sions. In this paper we apply the Rayleigh method to such
boundaries. Generally, Rayleigh’s method involves the cal-
culation of certain static lattice sums, which contain informa-
tion about the geometry of the array. We show that, impos-

ing certain geometrical constraints on the aspect ratios of the
unit cell and inclusions, only the lattice sums in polar coor-
dinates are needed. With the exception of the lattice sum
s2 , which is conditionally convergent, all the other polar
lattice sums are absolutely convergent and can be evaluated
with arbitrary high accuracy@4,7,14,16,17#. The lattice sum
s2 is related with the depolarization field and methods for
evaluation have been devised@4,7,14,16,17#.

Structures involving rectangular arrays are intrinsically of
interest since they permit inclusions to come close to touch-
ing, even when the area fraction of the inclusions is small
~e.g., if inclusions are in close proximity along they axis but
well spaced along thex axis!. It is thus necessary to distin-
guish the concepts of critical composites, where inclusions
come close to each other, from dilute composites, where the
area fraction of the inclusions is small. We study all three
cases: dilute noncritical composites, dilute critical compos-
ites, and concentrated critical composites.

For dilute noncritical composites, structured as rectangu-
lar arrays of elliptical cylinders, we derive a Maxwell-
Garnett type formula and comment on our result in relation
to other formulas of a Maxwell-Garnett type, which have
been proposed previously. In this way, we solve a contro-
versy concerning the correct form of this relationship for
composites with elliptical inclusions@18–20#. For dilute
critical composites, we exhibit a correction to the Maxwell-
Garnett formula which renders it useful even in the region
where the array dielectric constant is large. For concentrated
systems, we establish the geometrical constraints on the va-
lidity of our method.

II. RAYLEIGH’S IDENTITY FOR ELLIPTICAL
CYLINDERS

We consider a rectangular array of infinitely long ellipti-
cal cylinders embedded into a host medium of dielectric con-
stant«0 . The dielectric constant of the cylinders («) is speci-
fied as its ratio to the dielectric constant of the host medium,
so that we will use«051. The cross sections of the cylinders
are ellipses with the foci distance 2c. The semiaxes of the
cross section of the cylinders are denoted byr 1 andr 2 ~Fig.
1!. Note that the discussion which follows implicitly assumes
r 1>r 2: the modifications required to deal withr 2.r 1 are
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obvious. The cylinders in the array are subject to a uniform
electric fieldE0 , exterior to the region occupied by cylin-
ders, which makes an angleg with the x axis. The problem
we have to solve is to find the effective dielectric tensor of
the array («J* ) by means of Rayleigh’s method@4#.

The shape of the cross section of the cylinders defines the
most appropriate system of coordinates for the solution of
Laplace’s equation. Thus inside the unit cell centered at the
origin ~Fig. 1!, in elliptical coordinates@21,22#

x5ccoshmcosu, ~1!

y5csinhmsinu, ~2!

the cross section of the cylinder is defined bym5m0 . The
ellipse (C) divides the unit cell into two regions, where the
expansions of the potential are~see Appendix A!
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e2nmGcos~nu!1F2An
oS c2D

n

sinh~nm!

1Bn
oS 2cD

n

e2nmGsin~nu!J , ~3!

for m>m0 , and
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e1 (

n51

` F2Cn
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oS c2D

n

sinh~nm!sin~nu!G , ~4!

for m<m0 . We use the labelse ando to emphasize that the
corresponding coefficients are related with an even or an odd
function of u. Also, due to the symmetry properties of the
potential with respect to the reflectionsx→2x and
y→2y, the indexn in ~3! and ~4! has to be odd.

The Rayleigh identity for our problem follows from
Green’s theorem, applied to the general solution of Laplace’s

equation~3! and Green’s function~see Appendix B!, inside
the unit cell, in the domain between the ellipseC(m0) and
the boundary of the unit cell (]U)

E
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]n8 Gdl 8. ~5!

By substituting in~5! the expansion~B18! for Green’s func-
tion, and ~3! for Ve we obtain the Rayleigh identity for a
rectangular array of elliptical cylinders~see Appendix C!

(
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whereV0 is the potential for the applied field@21#

V0~m,u!5E0c~coshmcosucosg1sinhmsinusing!, ~7!

ands2n are static lattice sums@see~B12!#. From ~6!, using
the orthogonality of the trigonometric functions, we obtain
two linear systems

A2 j21
e 1 (

m51

`

L2 j21,2m21~c!B2m21
e 5E0cosgd j ,1 , ~8!

A2 j21
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for j51,2,3, . . . . Here,

L2 j21,2m21~c!5S 2 j12m23

2 j21 Ds2 j12m221l2 j21,2m21~c!,

~10!

with
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In the case of a rectangular array with the sidesa andb, and
a.b, the static lattice sumss2n can be written in the form

FIG. 1. The unit cell for a rectangular array of elliptical cylin-
ders. The semiaxes of the ellipse arer 1 and r 2 . In elliptical coor-
dinates the ellipse is defined bym0 through the relations
r 15ccoshm0, r 25csinhm0. We also show the incident fieldE0 .
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s2n5S 1bD
2n

(
~p1 ,p2!Þ~0,0!

S 1

p1a/b1 ip2
D 2n5S 1bD

2n

s2ñ ,

~12!

where the quantitiess2ñ are dimensionless. Thus the matrix
elements~11! take the form

l2 j21,2m21~c!5S 2cD 2m12 j22

(
n5 j1m

` S 2n

n1 j1m21D
3S 2n

n1 j2mD S c

2bD 2n2m21

2n
s2ñ . ~13!

For largen, the lattice sums are well approximated by the
nearest neighbors contribution@7#, so that we have

s2ñ'2F S baD
2n

1~21!nG . ~14!

The application of the ratio test to the series in~13! shows
that the series converge absolutely ifc,b/2. This means that
if we use polar coordinates in~B10! and elliptical coordi-
nates in~B14!, then Rayleigh’s method for rectangular arrays
of elliptical cylinders may be applied only for a particular set
of cross sections~see Fig. 2 for the case of a maximum area
fraction f5p/4). Note that the elliptical coordinates~1–2!
define a branch cut along thex axis, between the foci
(2c,0) and (c,0). Thus when we use polar coordinates in
the series expansion~B10!, in addition to the restriction
~B17! we also have to assume thatuzu.c. If the aspect ratio
of the inclusions (r 1 /r 2) is equal to the unit cell edge ratio
(a/b)

r 1
r 2

5
a

b
5h.1, ~15!

then Rayleigh’s method may be applied for area fractions in
the range

0, f,
p

4~h221!
. ~16!

Consequently, forh<A2 we may apply Rayleigh’s method
for all the area fractions in the range 0, f,p/4. Naturally,
for h.A2, Eq.~16! defines a subset of the full range of area
fractions for which Rayleigh’s method is applicable.

A second set of relations between the coefficientsAn
e,o

andBn
e,o is obtained by means of the boundary conditions at

the surface of the cylinder

Vi~m0 ,u!5Ve~m0 ,u!, ~17!

«
]Vi
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5
]Ve
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. ~18!

By substituting~3! and ~4! into ~17! and ~18! we obtain the
expressions of the coefficientsAn

e,o andCn
e,o in terms of the

Bn
e,o
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for odd n. Setting Vi(0,u)50, we find that
2C0

e52A0
e1B0

e50.
If we introduce the semiaxes of the ellipse

r 15ccoshm0 , r 25csinhm0 , r 1>r 2 , ~23!

and the depolarization factors@23#

L15r 1 /~r 11r 2!, L25r 2 /~r 11r 2!, L1>L2 , ~24!

then the relations~19! and ~21! take the form

Al
e5F11«

12«
1~L12L2!

l G ~2L1!
l ~2L2!

l

12~L12L2!
2l S p

f abD
l
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l
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f abD
l
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o ,
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for odd l . Here we have also used the area fraction

f5pr 1r 2 /~ab!, ~27!

wherea andb are the dimensions of the unit cell~see Fig.
1!.

By substituting~25! and ~26! into ~8! and ~9!, respec-
tively, we obtain two decoupled linear systems for the coef-
ficients Bn

e and Bn
o . When c50, we have lk,l (0)50,

FIG. 2. The shape of the ellipse inside the unit cell for the
maximum area fractionf5p/4. Here we also haver 15a/2,
r 25b/2, anda/b5A2 so thatc5b/2. This is one limiting case for
the convergence of the series in~ 13!.
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r 15r 25r, L15L251/2, f5pr2/(ab), and we obtain the
solution for a rectangular array of cylinders of radiusr @7#.

III. THE DIELECTRIC TENSOR OF DILUTE
NONCRITICAL COMPOSITES

First, we consider a single elliptical cylinder subject to a
uniform electric fieldE0 , oriented as shown in Fig. 1. The
potential of the applied field is

V0~m,u!5E0c~coshmcosucosg1sinhmsinusing!, ~28!

and the potentials in the region exterior to the cylinder
(Ve) and inside the cylinder (Vi) have the forms~3! and~4!,
respectively. In addition to the boundary conditions~17! and
~18! the potentialVe has to satisfy the relation@24#

Ve~m,u!um→`5V0~m,u!. ~29!

From ~3! and ~29! we obtain

Al
e5E0cosgd l ,1 , ~30!

Al
o5E0singd l ,1 , ~31!

so that the only nonzero coefficients in the series expansion
of the response field are

B1
e5
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S c2D

2

em0E0cosg, ~32!
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o5

~12«!sinh~2m0!

«coshm01sinhm0
S c2D

2

em0E0sing. ~33!

Due to the anisotropy of the system, the relation between the
polarization of the cylinder and the applied field has the form
@24,25#

S P1

P2
D 522p«0S a11 0

0 a22
D SE0,1

E0,2
D , ~34!

where the labels 1 and 2 specify thex andy components of
the vectorsP and E0 , and the minus sign has been intro-
duced according to the orientation of the applied field. The
nonzero components of the polarizability tensor (aJ ) are
given by the formulas

a1152
P1

2p«0E0,1
52

B1
e

A1
e 5

«21

L11«L2

f ab

2p
, ~35!

a2252
P2

2p«0E0,2
52

B1
o

A1
o 5

«21

«L11L2

f ab

2p
. ~36!

Now, for a dilute composite we may use the Clausius-
Mossotti formula to obtain the components of the dielectric
tensor

« j j*21

« j j*11
5pa j j n, j51,2 ~37!

wheren51/(ab) is the number of cylinders per unit area.
The off-diagonal elements of«J* are zero. From~37!, by
using the relationL11L251, we obtain Galeener’s formula
@18,19#

« j j*21

« j j*11
5

f

2

«21

L j1~12L j !«
, j51,2 ~38!

or

« j j*512
2 f

11«

12«
1~2L j21!1 f

, j51,2. ~39!

If, for the same problem of a dilute composite, we use the
Rayleigh identity in the first approximation, the linear sys-
tems~8! and ~9! take the form

H F11«

12«
1~L12L2!G p

f ab
1s2~g1!1l1,1~c!JB1

e5E0cosg,

~40!

H F11«

12«
1~L22L1!G p

f ab
2s2~g2!2l1,1~c!JB1

o5E0sing.

~41!

Here, we have also used the relations~25! and ~26!. Equa-
tions ~40! and~41! correspond to two problems:~i! a rectan-
gular array of elliptical cylinders with the applied field along
the negativex axis (E0,15E0cosg), and ~ii ! a rectangular
array of elliptical cylinders with the applied field along the
negativey axis (E0,25E0sing). In both cases we have the
same orientation of the axes, the unit cell having the longer
edge along thex axis (a.b). The lattice sums2 has to be
evaluated over a needle-shaped region elongated in the di-
rection of the applied field@4,5,11,12#, so that we have to use
g150 in ~40! andg25p/2 in ~41!. This indicates a rotation
of the applied field by an angle ofp/2 between~40! and~41!.
In conclusion, the two Eqs.~40! and~41! describe the prob-
lems shown in Fig. 3~A! and Fig. 3~B!, respectively.

The suml1,1(c) has the expression

l1,1~c!5 (
n52

` S 2n

n11D S 2nn D S c2D 2n22s2n

2n
5
3

2
s4c

21O~c4!,

~42!

and

c25ur 1
22r 2

2u. ~43!

Therefore, whenc is small, to orderf we may neglect
l1,1(c) in ~40! and ~41!. In this approximation the compo-
nents of the dielectric tensor are@4#

«11* 5122p
B1
e

abE0,1
512

2 f

11«

12«
1~L12L2!1 f abs2~0!/p

,

~44!
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«22* 5122p
B1
o

abE0,2

512
2 f

11«

12«
1~L22L1!2 f abs2~p/2!/p

. ~45!

Note the difference between~39! and ~44! and ~45! in the
coefficient of f in the denominator. Only in the case of a
square array (a5b), by means of the formula@14#

s2~g!52
p

a2
e22i ~g1p/2!, ~46!

we obtains2(0)52s2(p/2)5p/(ab), so that«J* obtained
from the first approximation of Rayleigh’s identity coincides
with Galeener’s result for a circular Lorentz cavity. Cohen
et al. @20# discussed what they viewed as inconsistencies
arising from Galeener’s formula, and derived a formula
based on an elliptical Lorentz cavity having the same depo-
larization factors as the inclusions

« j j*512
2 f

11«

12«
1~2L j21!12 f ~12L j !

, j51,2.

~47!

The expression~47! for «J* also differs from~44! and ~45!
even for a square array. This is not surprising, given that any
argument with an answer involving a depolarization factor
for the Lorentz cavity, as distinct from the particle, is not
rigorous. Rayleigh’s theory takes into account both the shape
of the inclusions, by means of the depolarization factors, and
the geometry of the array, by means of the lattice sums. It
also includes the direction of the incident field in the evalu-
ation of the lattice sums2 . In general, for a rectangular
array we have@14#

s2~g!5 limk→0

S2
Y~k,0!

Y2~k!
2

p

ab
e22i ~g1p/2!. ~48!

Here,S2
Y is a dynamic lattice sum which has the representa-

tion

S2
Y~k,0!J2~kj!5

4

ab(h
J2~Khj!

Kh
22k2

e2 i l uh, ~49!

wherej is a vector in the central unit cell andKh , hPZ2,
are the reciprocal array vectors@in polar coordinates
Kh5(Kh ,uh)#. Also,J2 andY2 represent Bessel functions of
the first and second kind, respectively. In Table I we give the
values of s2(g) as a function ofa/b, for g50 and
g5p/2. The first term in~48! vanishes in the case of a
square or hexagonal array. Therefore, ifa5b51, we have
s2(0)52s2(p/2)5p ~see the first line in Table I!.

The series in~49! are absolutely convergent, and the first
term in ~48! is independent ofg. Therefore, the lattice sums
s2(g) satisfy the relation

s2~0!2s2~p/2!5
2p

ab
. ~50!

A numerical check of~50! is given in the last two columns of
Table I. Here, we have usedb51 anda>b. It can be seen
that relation~50! is satisfied numerically with an accuracy of
1029 ~nine decimal places!.

Also, the method used by Lord Rayleigh@4# to evaluate
s2(p/2) gives us the value

s2~p/2!'2
p2

3
'23.289 868 134, ~51!

for a@b51. Consequently, in this limit we have

s2~0!'
2p

a
2

p2

3
. ~52!

Note that, from Table I,s2(p/2)52p2/3 ~to ten figures! for
values ofa/b greater than or equal to 5. In this range, we can
use~52! to gives2(0) to the same accuracy.

In the case of a rectangular array of circular cylinders,
touching in one direction@r 15r 25min(a,b)/2#, the rows of
cylinders are similar with an effective slab of the same ma-

FIG. 3. The physical systems described by~40! and ~41! and
~58! and ~59!.
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terial. With the lattice sums2(g) given by ~48!, the results
from ~44! and ~45! agree completely with the results ob-
tained by Ninham and Sammut@7,26#.

IV. THE DIELECTRIC TENSOR OF DILUTE CRITICAL
COMPOSITES

Here, we will consider a special type of rectangular array
of elliptical cylinders, havingr 1 /a→0 and 2r 2 /b→1 ~see
Fig. 4!. This is a composite with a very small area fraction
but with important multipole effects. In this casec'r 2 and,
in the first order approximation of Rayleigh’s identity~40!
and ~41!, we cannot neglect the seriesl1,1(c). Thus we ob-
tain the Maxwell-Garnett type formulas

«11* 512
2 f

11«

12«
1~L12L2!1

f ab

p
@s2~0!1l1,1~c!#

,

~53!

«22* 512
2 f

11«

12«
1~L22L1!2

f ab

p
@s2~p/2!1l1,1~c!#

.

~54!

At the same time,f is small and higher order truncation
orders of~8! and ~9! will give results almost identical with
~53! and ~54!.

In Figs. 5~A! and 5~B! we show the dependence of«11*
and«22* on r 2 , for a rectangular array of perfectly conducting
(«→`) elliptical cylinders, with a/b52, b51, and
r 15a/100. It can be seen that, in the limit of graphical ac-
curacy, the curves for truncation orders 1, 10, and 20 coin-
cide. For«11* the dependence onr 2 is almost linear, as the
distance between the cylinders, along thex axis, is '2a
~much larger thanr 1). Note that asr 2→0 the numerical
results from the Rayleigh identity differ from 1. Actually, as
r 2 approaches zero we have a rectangular array of perfectly
conducting thin strips of width 2r 1 and therefore, the dielec-
tric constant of the array never equals the dielectric constant
of the matrix. From~53! we obtain

«11* 511
2pr 1

2/~ab!

22r 1
2@s2~0!1l1,1~r 1!#

'11pS r 1a D 2S abD
51.000 628. ~55!

In contrast with this result, for a rectangular array of per-
fectly conducting circular cylinders,«11*→1 as the radius of
the cylinders tends to zero@see Fig. 5~A!#.

The dielectric constant«22* , for the incident field along
they axis, exhibits a similar behavior for a rectangular array
of perfectly conducting elliptical cylinders and a rectangular
array of perfectly conducting circular cylinders, of radius
r 2 . Even the Maxwell-Garnett type formula~54! gives high
values of«22* when the ellipses are close to touching along
the y axis. The maximum values of«22* are well approxi-
mated if we consider a series of capacitors along they axis
@5,27#.

TABLE I. The lattice sums2(g) evaluated from~48!, for different values ofa/b. Here, we have used
b51. The last two columns represent the left and right sides of~50!.

a/b g50 g5p/2 s2(0)2s2(p/2) 2p/(ab)

1 3.141 592 654 23.141 592 654 6.283 185 307 6.283 185 307
A2 1.163 942 558 23.278 940 380 4.442 882 938 4.442 882 938
2 20.148 000 128 23.289 592 781 3.141 592 654 3.141 592 654
3 21.195 472 517 23.289 867 619 2.094 395 102 2.094 395 102
4 21.719 071 806 23.289 868 133 1.570 796 327 1.570 796 327
5 22.033 231 072 23.289 868 134 1.256 637 061 1.256 637 061
6 22.242 670 582 23.289 868 134 1.047 197 551 1.047 197 551
7 22.392 270 233 23.289 868 134 0.897 597 901 0.897 597 901
8 22.504 469 970 23.289 868 134 0.785 398 163 0.785 398 163
9 22.591 736 433 23.289 868 134 0.698 131 701 0.698 131 701
10 22.661 549 603 23.289 868 134 0.628 318 531 0.628 318 531
15 22.870 989 113 23.289 868 134 0.418 879 020 0.418 879 020
20 22.975 708 868 23.289 868 134 0.314 159 265 0.314 159 265

FIG. 4. An ellipse elongated along they axis, inside the unit
cell, for a55, b51, r 15a/50, andr 2&b/2. The area fraction is
f'p/100. Here, we also haver 1,,r 2 so thatc&b/2.
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We also show in Figs. 5~A! and 5~B! the numerical results
obtained from the Maxwell-Garnett type formulas derived by
Galeener~39! @18# and Cohenet al. ~47! @20#. The corre-
sponding curves for«22* are similar and both differ from the
results obtained from the Rayleigh identity.

In Figs. 6~A! and 6~B! we give the results from a similar
analysis for a rectangular array of perfectly conducting ellip-
tical cylinders having r 15a/100 and b51, but with
a/b55. In this case we have a behavior of«11* as a function
of r 2 similar to that shown in Fig. 5~A!. Now, the curves of
«22* , as a function ofr 2 , for different truncation orders are
identical, to the limit of graphical accuracy@see Fig. 6~B!#,
but they are not so close to the curve corresponding to a
rectangular array of perfectly conducting circular cylinders
of radius r 2 @compare Fig. 6~B! and Fig. 5~B!#. Again, the
«22* curves from the formulas~39! and ~47! give completely
different results.

V. THE DIELECTRIC TENSOR OF CONCENTRATED
COMPOSITES

In the case of a concentrated composite we may find the
dielectric tensor from the equations@4#

«11* 5122p
B1
e

abE0,1
, ~56!

«22* 5122p
B1
o

abE0,2
, ~57!

with B1
e andB1

o obtained by solving the linear systems

F11«

12«
1~L12L2!

l G ~2L1!
l ~2L2!

l

12~L12L2!
2l S p

f abD
l

Bl
e

1 (
m odd

L l ,m~c!Bm
e 5E0cosgd l ,1 , ~58!

FIG. 5. The components of the dielectric tensor«11* ~A! and
«22* ~B!, as functions ofr 2 , for different truncation orders~N! of
~8! and~9!, for a rectangular array of perfectly conducting elliptical
cylinders. The unit cell of the array has the edgesa52, b51 and
the minor semiaxis of the ellipses isr 15a/100. We also show the
results from the formulas derived by Galeener~39! @18# and Cohen
et al. ~47! @20#, and the components of the dielectric tensor for the
rectangular array with perfectly conducting circular cylinders of
radiusr 2 ~ACC!.

FIG. 6. The components of the dielectric tensor«11* ~A! and
«22* ~B!, as functions ofr 2 , for different truncation orders~N! of
~8! and~9!, for a rectangular array of perfectly conducting elliptical
cylinders. The unit cell of the array has the edgesa55, b51 and
the minor semiaxis of the ellipses isr 15a/100. We also show the
results from the formulas derived by Galeener~39! @18# and Cohen
et al. ~47! @20#, and the components of the dielectric tensor for the
rectangular array with perfectly conducting circular cylinders of
radiusr 2 ~ACC!.
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F11«

12«
2~L12L2!

l G ~2L1!
l ~2L2!

l

12~L12L2!
2l S p

f abD
l

Bl
o

2 (
m odd

L l ,m~c!Bm
o 5E0singd l ,1 , ~59!

for odd l . Here, as in the case of dilute composites, we have
to use the lattice sums2(0) in ~58! ands2(p/2) in ~59!. All
the other lattice sums in~59! are identical with the corre-
sponding lattice sums from~58!. Note that, of all the coeffi-
cientsL i , j (c), as defined in~10!, only L1,1(c) contains the
lattice sums2 . Also none of the coefficientsl i , j (c) depend
on s2 .

To evaluate numerically the components of the dielectric
tensor we introduce the variables

Bn
e5

E0cosg

An
A12~L12L2!

2n

~2L1!
n~2L2!

n S f abp D nQn
e , ~60!

Bn
o5

E0sing

An
A12~L12L2!

2n

~2L1!
n~2L2!

n S f abp D nQn
o , ~61!

so that the systems~58! and ~59! may be written in the ma-
trix form

@De1W#Qe5U, ~62!

@Do2W#Qo5U, ~63!

whereDe,o are diagonal matrices with the nonzero elements

dl l
e 5

11«

12«
1~L12L2!

l , ~64!

dl l
o 5

11«

12«
2~L12L2!

l , ~65!

U is a vector with only one nonzero component
(u15Ar 1r 2) and the matrixW has the elements

wl ,m5L l ,m~c!Al

mS r 11r 2
2 D l 1m

3A@12~L12L2!
2l #@12~L12L2!

2m#. ~66!

If the dielectric constant of the cylinders («) is real, then the
matrices

Me,o5De,o6W, ~67!

are real and symmetric. By truncating the linear systems~62!
and ~63! at some finite orderN, and solving for the un-
knownsQe,o, we obtain the components of the dielectric
tensor from the equations

«11* 5122S fpabD
1/2

Q1
e , ~68!

«22* 5122S fpabD
1/2

Q1
o . ~69!

Note that all the eigenvalues of the matrices~67! are real.
If we truncateMe,o at some finite orderN we may reduce
these matrices to the diagonal form by orthogonal similarity
transformations. Denoting the eigenvalues ofMe andMo by
vk
e and vk

o , respectively, the components of the dielectric
tensor are given by the formulas@6#

«11* 5122 f(
k51

N
~v1,k

e !2

vk
e , ~70!

«22* 5122 f(
k51

N
~v1,k

o !2

vk
o . ~71!

Here,v1k
e and v1k

o represent the first component of thekth
eigenvector ofMe andMo, respectively. Numerically, we
have to reduce the initial real symmetric matrix to tridiagonal
form by Householder’s algorithm. Then we may use the QL
algorithm with implicit shifts to find the eigenvalues of the
reduced matrix@28#. In practice, for high truncation orders
N this method proved to be more stable than the method of
solving ~62! and ~63! by direct inversion of~67!.

The components of the dielectric tensor satisfy Keller’s
theorem@30#

«11* ~«!«22* ~1/«!51. ~72!

This property is a consequence of the algebraic structure of
the linear systems~62! and ~63!, and it is true for arbitrary
truncation ordersN. Thus in checking numerical results Eq.
~72! represents only a necessary condition, not a sufficient
condition@5#. Note thatall the formulas~39!, ~44! and~45!,
and ~47! satisfy Keller’s theorem.

The Rayleigh identities~62! and ~63! may be used for a
limited range of area fractions, for whichc,b/2. Under this
restriction, by using the Rayleigh method in the case of a
rectangular array of perfectly conducting elliptical cylinders,
with r 1 /r 25a/b52, we have obtained the agreement with
the results of Lu@29# ~all four figures given being in agree-
ment!.

If the aspect ratio of the inclusions is equal to the ratio of
the edges of the unit cell, and

r 1
r 2

5
a

b
5A2, ~73!

then we may use the Rayleigh identities~62! and~63! for the
whole range of area fractions 0, f,p/4, from a dilute non-
critical composite~with the inclusions having a smallc) to a
concentrated composite when the inclusions tend to touching
simultaneously in both directions, along thex and y axes.
Thus, in Figs. 7~A! and 7~B! we show the behavior of«11*
and «22* , as functions of area fractionf , for a rectangular
array of perfectly conducting elliptical cylinders. The unit
cell of the array has the edgesa5A2 andb51 . The semi-
axes of the cross sections of the cylinders are

r 15aAf /p, r 25bAf /p. ~74!

For different truncation orders of the linear systems~62! and
~63!, the corresponding curves differ significantly for
f*0.5. A high truncation order (N520) is necessary to
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show the divergence of«11* and «22* in the vicinity of
f&p/4, where the cylinders are close to touching.
We also show in Figs. 7~A! and 7~B! the components of

the dielectric tensor for the same rectangular array (b51,
a5A2) but with perfectly conducting circular cylinders of
radius r 25Af ab/p. The corresponding curves stop at
r 2&b/2, when the cylinders are close to touching along the
y axis @maximum area fractionf5p/(4A2)'0.555#. For
such a composite«22*→` as r 2→b/2 @see Fig. 7~B!#, while
«11* has a finite value@see Fig. 7~A!#.

In Figs. 8~A! and 8~B! we compare the components of the
dielectric tensor for arectangular arrayof perfectly conduct-
ing elliptical cylinders and the dielectric constant of asquare
array of perfectly conducting circular cylinders. The unit cell
of the rectangular array has the edgesa5A2 andb51, and
the semiaxes of the ellipses are given by~74!. The square
array has the edge of the unit celld51 and the radius of the
cylinders is given byr5dAf /p. As functions of area frac-
tion «11* and «22* for the rectangular array coincide~in the

limit of graphical accuracy! with the dielectric constant for
the square array. This means that all these quantities are
determined by the relative gap between the inclusions (gx
andgy for the rectangular array, andg for the square array!.
Thus for elliptical cylinders in a rectangular array we have

gx5
a22r 1

a
5122

r 1
a
, ~75!

gy5
b22r 2

b
5122

r 2
b
, ~76!

wherer 1 /a5r 2 /b5Af /p, so thatgx5gy . For circular cyl-
inders in a square array the relative gap is the same along the
x andy axes

g5122
r

d
5122Af /p. ~77!

FIG. 7. The components of the dielectric tensor«11* ~A! and
«22* ~B!, as functions of area fraction (f ), for different truncation
orders ~N! of ~62! and ~63!, for a rectangular array of perfectly
conducting elliptical cylinders. The unit cell of the array has the
edges a5A2, b51 and the aspect ratio of the ellipses is
r 1 /r 25a/b. We also show the components of the dielectric tensor
for the rectangular array with perfectly conducting circular cylin-
ders~ACC!. The vertical solid line marks the maximum area frac-
tion fmax5p/4.

FIG. 8. The components of the dielectric tensor«11* ~A! and
«22* ~B!, as functions of area fraction (f ), for a rectangular array of
perfectly conducting elliptical cylinders~solid curves! and for a
square array of perfectly conducting circular cylinders~dashed
curves!. The unit cell of the rectangular array has the edges
a5A2, b51 and the aspect ratio of the ellipses isr 1 /r 25a/b. The
unit cell of the square array has the edged51. In both cases we
have used a truncation orderN540.
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Consequently, the relative gap is the same along thex and
y axes for both systems, and therefore the dielectric constant
is similar for both directions and systems.

In Figs. 9~A! and 9~B! we compare the components of the
dielectric tensor for a rectangular array of elliptical cylinders
and the dielectric constant of a square array of circular cyl-
inders. The geometry of the arrays is the same as in Fig. 8,
but the relative dielectric constant of the inclusions is«55.
It can be seen that, due to the particular value of the aspect
ratio of the inclusions and the geometry of the rectangular
array, there are quite small differences between«11* and«22*
for the rectangular array and the dielectric constant of the
square array, over the whole range of area fractions
0, f,p/4.

VI. CONCLUSIONS

We have extended the Rayleigh method@4# for inclusions
with noncircular boundaries. This extension is a hybrid tech-
nique: the lattice sums are evaluated in polar coordinates,

while for the boundary conditions we use elliptical coordi-
nates. By means of our technique we have analyzed numeri-
cally and analytically three types of composites: dilute non-
critical, dilute critical, and concentrated. For dilute
noncritical and dilute critical composites we have obtained
different Maxwell-Garnett type formulas. Note that our di-
pole formula for dilute critical composites works well even
when u«* u@1. Previous asymptotic analysis of composites
has relied on methods other than the application oflRow or-
der Rayleigh identities.

The hybrid technique is limited by geometrical con-
straints, so that it may be applied only for a limited range of
area fractions. Even with these limitations, the Rayleigh
method represents an excellent mathematical formalism for
analytical studies. In future work we will develop a method
in which both the lattice sums and the boundary conditions
are represented in the same coordinate system. We will also
attempt to remove the restriction that the axes of the ellipses
and of the array coincide.
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APPENDIX A: POTENTIAL EXPANSIONS

Expressions~3! and ~4! for the potential outside and in-
side the cylinder differ from the corresponding potential ex-
pansions used by Morse and Feshbach@21#. The coefficients
have been chosen so that, in the limitc→0, when the ellipse
is transformed into a circle, the potential takes the usual form
in polar coordinates. This form is obtained by means of the
limits @22#

lim
c→0
m→`

c

2
em5r , lim

c→0
m→`

c

2
e2m50, lim

c→0
m→`

2

c
e2m5

1

r
,

~A1!

where r is the distance to the origin in polar coordinates.
Also, the coordinateu becomes the polar anglew. Conse-
quently, from~3! and ~4! we have

Ve~r ,w!52A0
e1B0

e1 (
n51

`

$@An
er n1Bn

er2n#cos~nw!

1@An
or n1Bn

or2n#sin~nw!%, ~A2!

in the matrix (r>r 0), and

Vi~m,w!52C0
e1 (

n51

`

@Cn
er ncos~nw!1Cn

or nsin~nw!#,

~A3!

inside the cylinder (0<r<r 0). Therefore the coefficients
An
e,o , Bn

e,o andCn
e,o have the same dimension in elliptical

coordinates as in polar coordinates.

FIG. 9. The components of the dielectric tensor«11* ~A! and
«22* ~B!, as functions of area fraction (f ), for a rectangular array of
elliptical cylinders~solid curves! and for a square array of circular
cylinders ~dashed curves!. The relative dielectric constant of the
inclusions is«55. The unit cell of the rectangular array has the
edges a5A2, b51 and the aspect ratio of the ellipses is
r 1 /r 25a/b. The unit cell of the square array has the edged51. In
both cases we have used a truncation orderN540.
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APPENDIX B: THE GREEN’S FUNCTION

We consider the problem of a uniform electric field ap-
plied to a periodic array of elliptical cylinders. The centers of
the cylinders are specified by the array vectors

Rp5p1ê11p2ê2 , p5~p1 ,p2!PZ2, ~B1!

whereê1 andê2 represent the fundamental translation vectors
of the array.

The Green’s function for our problem is the solution of
the Poisson equation

¹2G~r ;r0!522p(
p

d~r2r02Rp!, ~B2!

and has the form

G~r ;r0!52 lnur2r0u2 (
pÞ0

ln
ur2r02Rpu

Rp
. ~B3!

By introducing the representation in the complex plane of the
vectors involved in~B3!, the Green’s function takes the form

G~z;z0!5G0~z;z0!1 (
pÞ0

Gp~z;z0!, ~B4!

where

G0~z;z0!52Re ln~z2z0!, ~B5!

Gp~z;z0!52Re ln
z2z02zp

zp
. ~B6!

Now, we consider the transform to elliptical coordinates
defined byz5ccoshw, with w5m1 iu. In Cartesian coordi-
nates, this transform is given by Eqs.~1! and ~2!. We also
have z05ccoshw0 and, by substituting in~B5!, we obtain
@21#

2 ln~z2z0!52 ln~ccoshw2ccoshw0!

52 ln
c

2
2w12(

n51

`
e2nw

n
cosh~nw0!,

~B7!

for uwu.uw0u. Hence form.m0 , we have

G0~z;z0!52 ln
c

2
2m

12(
n51

`
e2nm

n
@cosh~nm0!cos~nu0!cos~nu!

1sinh~nm0!sin~nu0!sin~nu!#. ~B8!

To obtain the series expansion of~B6! we denote by
z5z2z0 . If z is restricted to the unit cell, so that

uzu,uzpu, ;pÞ0 ~B9!

we have

2 ln
z2z02zp

zp
52 ip1 (

n51

`
1

n S z

zp
D n, ~B10!

so that

(
pÞ0

Gp~z;z0!5Re(
n51

`
zn

n
sn , ~B11!

where we have introduced the lattice sums

sn5 (
pÞ0

S 1zpD
n

. ~B12!

For any periodic array, defined by~B1!, which
;Rp5(Rp ,wp) also contains the vector
2Rp5(Rp ,wp1p), the lattice sums~B12! satisfy the rela-
tion

sn5~21!nsn . ~B13!

Therefore, in this case, only the lattice sums of even order
appear in~B11!. The sums2 is conditionally convergent and
depends on the direction of the applied field@4,5,11,12,14#.
Therefore, we will denote it bys2(g). The sums of order
n>3 are absolutely convergent.

Then by means of the binomial expansion

zn5cn~coshw2coshw0!
n

5S c2D n (
k,l 50

n S nkD S nl D ~21!k1l e~k1l 2n!we~k2l !w0,

~B14!

we may recast the Green’s function~B3! in the form

G~m,u;m0 ,u0!52 ln
c

2
2m

12(
n51

`
e2nm

n
@cosh~nm0!cos~nu0!cos~nu!

1sinh~nm0!sin~nu0!sin~nu!#

1ReH (
n51

` S c2D nsn

n F (
k,l 50

n S nkD S nl D
3~21!k1l e~k1l 2n!we~k2l !w0G J . ~B15!

Note that this series expansion of the Green’s function is
valid only inside the unit cell, whereur2r0u,Rp , ;pÞ0,
and form.m0 . Hence, ifm0 defines the ellipse (C), then the
series expansion~B15! is valid in the region between the
ellipse (C) and the boundary of the unit cell~see Fig. 1!. The
Green’s function~83! is unique to within a constant so that,
we can remove from~B15! the constant term ln(c/2).

If the array has the property that;Rp5(Rp ,wp) it also
contains the vectorRp85(Rp ,2wp), then the lattice sums are
real. An example of such an array is the rectangular array
with the fundamental translation vectorsê15(a,0) and
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ê25(0,b), wherea andb are the sides of the unit cell. Thus
the representation in the complex plane of the array vectors
~B1! has the form

zp5p1a1 ip2b, p5~p1 ,p2!PZ2. ~B16!

Note that whena.b the condition~B9! becomes

uzu,min~ uzpu!5b. ~B17!

Also, the Green’s function~B15! takes the form

G~m,u;m0 ,u0!52m

12(
n51

`
e2nm

n
@cosh~nm0!cos~nu0!cos~nu!

1sinh~nm0!sin~nu0!sin~nu!#

1 (
n51

` S c2D 2ns2n

2n (
k,l 50

2n S 2nk D S 2n
l

D
3~21!k1l e~k1l 22n!me~k2l !m0$cos@~k

1l 22n!u#cos@~k2l !u#2sin@~k1l

22n!u#sin@~k2l !u#%. ~B18!

The Green’s function~B18! is doubly periodic and fully fac-
torized in the variablesm, u, m0 , andu0 .

APPENDIX C: THE GREEN’S THEOREM

In ~5! the potentialVe is the general solution of the
Laplace equation and the Green’s functionG satisfies~B2!.
Hence we have

Ve~m,u!5
1

2p R
]U

SG ]Ve

]n8
2Ve

]G

]n8Ddl 8

1
1

2p R
]C

SG ]V

]n0
2V

]G

]n0
Ddl 0 . ~C1!

Here to simplify the formulas we have omitted the arguments
of Ve andG in integrals. Also, the integration variables in
the second integral correspond to the ellipse (C). By means
of the periodicity properties ofVe andG we find that the first
integral in~C1!, along the boundary of the unit cell, gives the
potential of the applied field

V0~m,u!5E0c~coshmcosucosg1sinhmsinusing!.
~C2!

In the second integral, we change the direction of the normal,
exterior to the ellipse, and use the element of arc length
along the ellipse@22#

dl 05hm0
du0 , hm0

5cAsinh2m01sin2u0. ~C3!

The normal derivative on the ellipse has the form
]/]n05(1/hm0

)]/]m0 , so that~C1! takes the form

Ve~m,u!5V0~m,u!2
1

2pE0
2pSG ]Ve

]m0
2Ve

]G

]m0
Ddu0 .

~C4!

By substituting~3! for Ve and ~B18! for the Green’s func-
tion, in the integral in~C4! we have

1

2pE0
2pSG ]Ve

]m0
2Ve

]G

]m0
D du0

52 (
nodd

@Bn
ecos~nu!1Bn

osin~nu!#S 2cD ne2nm

1 (
modd

(
n5m

`

(
l 50

2n2m H S c2D 2n2mS 2n

l 1mD S 2n
l

D m

2n
s2n

3@Bm
e cos~2l 1m22n!u

2Bm
o sin~2l 1m22n!u#e~2l 1m22n!mJ . ~C5!

With ~3! and ~C5! substituted in~C4! we obtain~6!.
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