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Transport properties of arrays of elliptical cylinders
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We apply the Rayleigh method to derive a formulation yielding the effective dielectric tensor of a periodic
composite consisting of an array of elliptical cylinders placed in a matrix of unit dielectric constant. We
consider three types of composites having this structure: dilute noncritical, dilute critical, and concentrated
composites. For dilute noncritical composites we comment on our result in relation to the competing forms of
the Maxwell-Garnett formula, which have been proposed previously. We also discuss the case of dilute critical
and concentrated composites of solid elliptical inclusions, and comment on geometrical constraints on the
validity of the Rayleigh equation$§S1063-651X96)00908-7

PACS numbe(s): 03.50.De, 41.20.Cv, 78.20.Bh, 78.20.Ci

[. INTRODUCTION ing certain geometrical constraints on the aspect ratios of the
unit cell and inclusions, only the lattice sums in polar coor-

Analysis concerning the transport properties of inhomo-dinates are needed. With the exception of the lattice sum
geneous systems is of fundamental theoretical interest, but,, Which is conditionally convergent, all the other polar
also plays an important role in optimal designs of industriallattice sums are absolutely convergent and can be evaluated
products. For example, many modern structural materials dewith arbitrary high accuracf4,7,14,16,17. The lattice sum
pend on the use of composite materials. It is also possible tg2 iS related with the depolarization field and methods for
produce columnar thin films which are highly conducting. In€valuation have been devisp#7,14,16,17.
particular, thin films containing metal and voids in an ob-  Structures involving rectangular arrays are intrinsically of
lique columnar structure exhibit angular dependent opticainterest since they permit inclusions to come close to touch-
properties[1,2]. By forming the columns at an angle and ing, even when the area fraction of the inclusions is small
coating them with metal, highly conducting elliptical cylin- (€.g., if inclusions are in close proximity along thexis but
ders can be produced. Such a capacitive grid can manife¥tell spaced along the axis). It is thus necessary to distin-
strong angular selectivity as a result of the basic asymmetrguish the concepts of critical composites, where inclusions
of the component ellipses. Materials with such characteriscome close to each other, from dilute composites, where the
tics may have uses in filters, windows in residential and comarea fraction of the inclusions is small. We study all three
mercial buildings, and car windscreejis-3]. cases: dilute noncritical composites, dilute critical compos-

Here, using the terminology for the calculation of the di- ites, and concentrated critical composites.
electric constant, we analyze the transport properties of a For dilute noncritical composites, structured as rectangu-
two-dimensional two-phase composite material consisting ofar arrays of elliptical cylinders, we derive a Maxwell-
a rectangular array of elliptical cylinders placed in a matrixGarnett type formula and comment on our result in relation
of unit dielectric constantwith the principal axes of the to other formulas of a Maxwell-Garnett type, which have
ellipses coinciding with the periodicity axes of the ajrajp ~ been proposed previously. In this way, we solve a contro-
obtain the effective dielectric constant of the array we use th&¥ersy concerning the correct form of this relationship for
method devised by Lord Rayleidh], for rectangular arrays composites with elliptical inclusion§18-20. For dilute
of circular cylinders. Rayleigh’s method has been extende@ritical composites, we exhibit a correction to the Maxwell-
to include an arbitrary number of terms and applied in studGarnett formula which renders it useful even in the region
ies of arrays of cylinder§5—7], arrays of coated cylinders Where the array dielectric constant is large. For concentrated
[8-10], lattices of sphere$11,17, and lattices of coated Systems, we establish the geometrical constraints on the va-
sphereg10]. This method has also been used in problems ofidity of our method.
elastostatic$13,14]. Note that the same formalism and the
resuIFs. are immedjately applipable to many other transport Il. RAYLEIGH'S IDENTITY FOR ELLIPTICAL
coefficients mclqd.mg thosg listed by Ba_tcheIDrS]; e.g., CYLINDERS
thermal conductivity, electrical conductivity, magnetic per-
meability, mobility, permeability of a porous medium, We consider a rectangular array of infinitely long ellipti-
modulus of torsion in a cylindrical geometry, and effective cal cylinders embedded into a host medium of dielectric con-
mass in a bubbly flow. stantey. The dielectric constant of the cylinders)(is speci-

The technique used in this paper represents an extensidied as its ratio to the dielectric constant of the host medium,
of Rayleigh’s method to noncircular boundaries of the inclu-so that we will usesq=1. The cross sections of the cylinders
sions. In this paper we apply the Rayleigh method to suclare ellipses with the foci distancec2The semiaxes of the
boundaries. Generally, Rayleigh’s method involves the caleross section of the cylinders are denoted byndr, (Fig.
culation of certain static lattice sums, which contain informa-1). Note that the discussion which follows implicitly assumes
tion about the geometry of the array. We show that, impos¥,=r,: the modifications required to deal with,>r, are
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y equation(3) and Green'’s functiorisee Appendix B inside
the unit cell, in the domain between the ellipS8éu,) and
the boundary of the unit celloU)

| 6o 0vaviu 0
U\C

—Ve(u',0")V?G(u,0;u',6")JdA’

! NVe(u',0")
; = fﬁ G(,u,b’:,u’,ﬁ’)#
! (9U)U(IC) an
R
i e i = , , &G(,u,b‘,,u',@') oy
' a ' —Ve(u',0 )T ds’. 5

FIG. 1. The_ unit cell for a _rectangular array of _ell@ptical cylin- By substituting in(5) the expansioriB18) for Green’s func-
ders. The semiaxes of the ellipse akeandr,. In elliptical coor- tion, and(3) for V, we obtain the Rayleigh identity for a

dinates the ellipse is defined by, through the relations L : :
.= ccoshug, I,—csinfyug. We also show the incident fiel,. rectangular array of elliptical cylindefsee Appendix €

c\i
obvious. The cylinders in the array are subject to a uniform >, 2 E) [Afcoshj,u)cos(j 0)+Aj’sinr(ju)sin(j 0)]

electric fieldE,, exterior to the region occupied by cylin- 1 °dd
ders, which makes an anglewith the x axis. The problem =o2n-m g enemi op
we have to solve is to find the effective dielectric tensor of =Vo(u,0)— 2, > e
. ol M, 2 /
the array €*) by means of Rayleigh’'s methdd]. m oddn=m /=0 /+m
The shape of the cross section of the cylinders defines the on
most appropriatg system _of poordinatgs for the solution of ( ) ) 202n[8§c05(2/+m—2n)6
Laplace’s equation. Thus inside the unit cell centered at the /) 2n
origin (Fig. 1), in elliptical coordinate$21,22|
x=ccoshucost (1) —B?nsir(2/+m—2n)g]e(2/+m2n>#], (6)
y=csinhusiné, (2)  whereV, is the potential for the applied fiel@1]
the cross section of the cylinder is defined joy: . The Vo(u, 0) = Eqc(coshucosgcosy+ sinhusingsiny), (7)

ellipse (C) divides the unit cell into two regions, where the

expansions of the potential atgee Appendix A and o5, are static lattice sumisee(B12)]. From (6), using

the orthogonality of the trigonometric functions, we obtain
© c\n two linear systems
Ve, 0)=2A5+BE+ >, HZA‘;(E) coshnu)
n=1

AS_qt mzl Agj_1om-1(€)BS_1=Eqcosyd; 1, (8)

n c n
+ B E) e "“|cognh)+ 2Aﬁ<§) sinh(nuw)
of2\" ol gj—l_ 21 Azj—l,zm—l(C)Bgm—lzEoSin75j,1a 9
+Bp| <] e "™sin(ng) . (3) =
for j=1,2,3.... Here,
for u=pu,, and
2j+2m-3
* c\" Agj_12m-1(C)= 2i—1 02j+2m-2F Ngj—1,2m-1(C),
Vi(u,0)=2CS+ >, |2C8 = | coslinu)cogno) )
n=1 2 (10)
c\" . i with
+2Cp > sinh(nw)sin(ng)|, 4
i 2n 2n
for u=<u,. We use the labels ando to emphasize that the Azj‘l'zm_l(c)_n:jm n+j+m—1/{n+j—m
corresponding coefficients are related with an even or an odd o om_2i 42
function of 4. Also, due to the symmetry properties of the % c " 2m-1 (11)
potential with respect to the reflections— —x and 2 2n o

y— —Y, the indexn in (3) and(4) has to be odd.
The Rayleigh identity for our problem follows from In the case of a rectangular array with the sideendb, and
Green’s theorem, applied to the general solution of Laplace’ea>Db, the static lattice sums-,,, can be written in the form
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aa
0<f<W—_1)' (16

Consequently, fom=< 2 we may apply Rayleigh’s method
for all the area fractions in the range<@ <m/4. Naturally,
for »>2, Eq.(16) defines a subset of the full range of area
fractions for which Rayleigh’'s method is applicable.

X A second set of relations between the coefficiehfs
andB;° is obtained by means of the boundary conditions at
the surface of the cylinder

Vi(MOaa):Ve(MOya)y (17)
v Ve
a 8(9_ = c7_ (18)
K M= Mo M M= Mo

FIG. 2. The shape of the ellipse inside the unit cell for the
maximum area fractionf=/4. Here we also have;=a/2, By substituting(3) and (4) into (17) and(18) we obtain the
r,=b/2, anda/b= 2 so thatc=b/2. This is one limiting case for ~expressions of the coefficients'® andC>° in terms of the

the convergence of the series(il3). Be.°
n
1\2" 1 an f1\2" cosh{nug) +esinh(nug) (22"
UZn:(_> —_— :(_) Ton, n= 1= 0 5 oz nl“OBe (19
b/ (py.p2%00 | P1a/b+ip, b (1-e)sin2nug) ¢
(12 -
L~ . . : Ch= (‘) B, (20
where the quantities-,, are dimensionless. Thus the matrix (1- s)smr(Zn,uo) c
elementg11) take the form . : » (2
ecoshnug) + sinh(n
) Aﬁ— Mo Ho) [ 2 fwoBO 21)
2m+2j on (1—g)sinh(2nwg) c
)\ L _ =| — .
2j=1.2m l(C) C n;rm n+]+m_1 2 2n
O —
T S)Slnr(znﬂo)<c) B, 22

2n c\2m—1—
n+j-m/{2b/ ~2n 2n- (19

for odd n. Setting V;(0,6)=0, we find that
2C§=2A5+Bg=0.

For largen, the lattice sums are well approximated by the ¢ we introduce the semiaxes of the ellipse

nearest neighbors contributi¢], so that we have

ry=ccoshug, ro=csinhug, ri=r,, (23

2n
+(—D"

02,1%2[ 3 (14 and the depolarization factof&3]

Li=rq/(ri+ry), Lo=ry/(ri+ry), Li=L,, (24
The application of the ratio test to the series(18) shows 1= al(ratre) 2= r2l(ratr2) 1=k, (24
that the series converge absolutelg#b/2. This means that then the relation$19) and(21) take the form

if we use polar coordinates ifB10) and elliptical coordi-

nates in(B14), then Rayleigh’s method for rectangular arrays o |1te y (2Ly)7(2Ly)" ‘.

of elliptical cylinders may be applied only for a particular set A= 1—¢ +(Li—Lo) 1—(L;— Ly \fab ~7

of cross sectiongsee Fig. 2 for the case of a maximum area ) ’ (25)
fraction f=#/4). Note that the elliptical coordinat€§—2

define a branch cut along the axis, between the foci , [1+e Jeryeuy’ [ w7,
(—c,0) and €,0). Thus when we use polar coordinates in A= 1—¢ —(Li—L) w fab B/,
the series expansiofB10), in addition to the restriction ) ’ (26)

(B17) we also have to assume tHgt>c. If the aspect ratio ’ _
of the inclusions (, /r,) is equal to the unit cell edge ratio for odd /. Here we have also used the area fraction

(a/b)
f=mrqiry/(ab), (27)

M

a wherea andb are the dimensions of the unit céfee Fig.
r. b

1).

By substituting(25) and (26) into (8) and (9), respec-
then Rayleigh’s method may be applied for area fractions irively, we obtain two decoupled linear systems for the coef-
the range ficients B; and BJ. When c=0, we have\ ,(0)=0,

=p>1, (15)
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ri=r,=p, Ly=L,=1/2, f=mp?/(ab), and we obtain the wheren=1/(ab) is the number of cylinders per unit area.

solution for a rectangular array of cylinders of radpu$7]. The off-diagonal elements of* are zero. From37), by
using the relatiorL; +L,=1, we obtain Galeener’'s formula

lll. THE DIELECTRIC TENSOR OF DILUTE (18,19

NONCRITICAL COMPOSITES
sj*j -1 f e—1

First, we consider a single elliptical cylinder subject to a * =5 — - 1=12 (38
uniform electric fieldE,, oriented as shown in Fig. 1. The eptl 2L+ (-Lye
potential of the applied field is or
Vo(u,0) =Eqc(coshucosfcosy + sinhusingdsiny), (28 ot
* = —_— i =
and the potentials in the region exterior to the cylinder 2jj=1 1 =12 (39

+e
(Ve) and inside the cylinder\(;) have the formg3) and(4), 1—. L= D+f
respectively. In addition to the boundary conditidtig) and

(18) the potentiaV, has to satisfy the relatiof24] If, for the same problem of a dilute composite, we use the

_ Rayleigh identity in the first approximation, the linear sys-
Ve(#t:0)] o= Vol . 6). (29 tems(8) and (9) take the form

From (3) and(29) we obtain

1+e¢ T
——+(Ly—Ly) |[—+ +\q4(C) { B§=Eqcosy,
AS=Eqcosys, 1, (30) Hl—s (Limba) g +oalya) F hadl )] 1= EoCOSy
(40)
A)=Eosinyd, 1, (31)
1+e¢ T o )
so that the only nonzero coefficients in the series expansion| |1—¢ +(La—Ly) ﬁ_az( ¥2) —A1(C) | Bi=Egsiny.
of the response field are (41

Here, we have also used the relatid@$) and (26). Equa-
tions (40) and(41) correspond to two problem§) a rectan-
gular array of elliptical cylinders with the applied field along
2 the negativex axis (Eq;=Eqcosy), and (ii) a rectangular
) eHoEqsiny. (33 array of elliptical cylinders with the applied field along the
negativey axis (Eq,=Egsiny). In both cases we have the

. . same orientation of the axes, the unit cell having the longer
Due to the anisotropy of the system, the relation between thgdge along the axis @>b). The lattice sumr, has to be

polarization of the cylinder and the applied field has the formevaluated over a needle-shaped region elongated in the di-

o (1—g)sinh(2u0) ( c
17 coshuy+ esinhug | 2

2
) e*0E,cosy, (32

c
2

o_ (1—&)sin(2uo)
1™ gcoshug+ sinhug

[24,29 rection of the applied fiel{4,5,11,12, so that we have to use

p o 0\/E v1=0 in (40) and y,= 7/2 in (41). This indicates a rotation
1) - _27780< 1 ) ( 0’1) 1 34y  of the applied field by an angle of/2 betweer(40) and(41).
P2 0  ax/\Epy In conclusion, the two Eq$40) and (41) describe the prob-
lems shown in Fig. @) and Fig. 3B), respectively.

where the labels 1 and 2 specify tkendy components of The sum\; 4(c) has the expression

the vectorsP and Ey, and the minus sign has been intro-

duced according to the orientation of the applied field. The “ [ 2n\(2n\[c\* 20, 3

nonzero components of the polarizability tense@f) (are 7\1,1(0)222 n+1/l n )(5) E:§U4CZ+O(C4)’

i

given by the formulas

(42)
Pl B? 8_1 fab
- _ - - = and
T o megEey AL Litel, 27 (35)
c®=|ri—r3. (43)
P, B s—1 fab
(36)

Therefore, whenc is small, to orderf we may neglect
Ay4(c) in (40) and (41). In this approximation the compo-
Now, for a dilute composite we may use the Clausius-nents of the dielectric tensor afé]
Mossotti formula to obtain the components of the dielectric
tensor . B 2f
STl 2T ey, ¢ 1te !

i ) ' — +(L—Ly) +faboy(0)/ 7

=majin, J:1,2 (37) 1-e
ii (44)

O ey AL eLitl; 2w
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y N 2f .
8“:1_ 1+e y J:1,2
E E+(2L1_1)+2f(1_|'j)

- 0 (47)

The expressiori47) for £* also differs from(44) and (45)
X even for a square array. This is not surprising, given that any
argument with an answer involving a depolarization factor
S R for the Lorentz cavity, as distinct from the particle, is not
' a : rigorous. Rayleigh’s theory takes into account both the shape
of the inclusions, by means of the depolarization factors, and
the geometry of the array, by means of the lattice sums. It
(A) also includes the direction of the incident field in the evalu-
ation of the lattice sumr,. In general, for a rectangular
array we havé14]

Y
S2(k,0) 16—2i(7+'n-/2)_

y \L 02(7):””‘@0%— ab (48)
E,

Here,S}’ is a dynamic lattice sum which has the representa-
tion

A

| 4 In(Knb)

| Si 0ok = T8 Jmize (49
j

h

g where £ is a vector in the central unit cell ari¢l,,, he 72,
| \ are the reciprocal array vectorn polar coordinates
Kn=(Kp,6p) ] Also,J, andY, represent Bessel functions of
the first and second kind, respectively. In Table | we give the
values of o5(y) as a function ofa/b, for y=0 and
(B) vy=l2. The first term in(48) vanishes in the case of a
square or hexagonal array. Thereforeaif b=1, we have
FIG. 3. The physical systems described @@) and (41) and ~ ©2(0)=—o2(7/2)=m (see the first line in Table). _
(58) and (59). The series in49) are absolutely convergent, and the first
term in(48) is independent ofy. Therefore, the lattice sums
o,(7y) satisfy the relation

abEy, 0,5(0)—oy(ml2)= z—z (50

2f
=1- e - (49 A numerical check of50) is given in the last two columns of
1= T (ke L) —faboy(m/2)/ 7 Table I. Here, we have usdi=1 anda=b. It can be seen
that relation(50) is satisfied numerically with an accuracy of
10" (nine decimal placés
Also, the method used by Lord Rayleifi#t] to evaluate
o,(ml2) gives us the value

Note the difference betweef39) and (44) and (45) in the
coefficient of f in the denominator. Only in the case of a
square arrayd=Db), by means of the formulpl4] 2

v
oo(ml2)~— 3 3.289 868 134, (51
oo y)=— %efm(erﬂ'/Z), (46) for a>b=1. Consequently, in this limit we have
27 @l
02(0)%?—?. (52)

we obtaine,(0)= — o,(7/2)=w/(ab), so thate™* obtained

from the first approximation of Rayleigh’s identity coincides Note that, from Table lg,(7/2)= — 7%/3 (to ten figuregfor
with Galeener's result for a circular Lorentz cavity. Cohenvalues ofa/b greater than or equal to 5. In this range, we can
et al. [20] discussed what they viewed as inconsistenciesise(52) to give o,(0) to the same accuracy.

arising from Galeener's formula, and derived a formula In the case of a rectangular array of circular cylinders,
based on an elliptical Lorentz cavity having the same depotouching in one directiofir,=r,=min(a,b)/2], the rows of
larization factors as the inclusions cylinders are similar with an effective slab of the same ma-
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TABLE I. The lattice sumo,(y) evaluated from(48), for different values of/b. Here, we have used
b= 1. The last two columns represent the left and right side$of
a/b y=0 y=ml2 05(0)—o5(7/2) 27/ (ab)
1 3.141 592 654 —3.141 592 654 6.283 185 307 6.283 185 307
\/5 1.163 942 558 —3.278 940 380 4.442 882 938 4.442 882 938
2 —0.148 000 128 —3.289592 781 3.141 592 654 3.141 592 654
3 —1.195 472 517 —3.289 867 619 2.094 395 102 2.094 395 102
4 —1.719 071 806 —3.289 868 133 1.570 796 327 1.570 796 327
5 —2.033231072 —3.289 868 134 1.256 637 061 1.256 637 061
6 —2.242 670 582 —3.289 868 134 1.047 197 551 1.047 197 551
7 —2.392 270 233 —3.289 868 134 0.897 597 901 0.897 597 901
8 —2.504 469 970 —3.289 868 134 0.785 398 163 0.785 398 163
9 —2.591 736 433 —3.289 868 134 0.698 131 701 0.698 131 701
10 —2.661 549 603 —3.289 868 134 0.628 318 531 0.628 318 531
15 —2.870989 113 —3.289 868 134 0.418 879 020 0.418 879 020
20 —2.975 708 868 —3.289 868 134 0.314 159 265 0.314 159 265
terial. With the lattice sumr,(y) given by (48), the results 2f
from (44) and (45) agree completely with the results ob- e3=1— 1+ f .
X . € ab
tained by Ninham and Samm(it,26]. 1 +(Ly—Ly)— ?[02(77/2) +N14(c)]
(54)

IV. THE DIELECTRIC TENSOR OF DILUTE CRITICAL
COMPOSITES At the same timef is small and higher order truncation

. . . orders of(8) and (9) will give results almost identical with
Here, we will consider a special type of rectangular aray53) and (54).

of elliptical cylinders, having ;/a—0 and 2,/b—1 (see
Fig. 4). This is a composite with a very small area fraction
but with important multipole effects. In this case-r, and,

in the first order approximation of Rayleigh’s identit$0)
and(41), we cannot neglect the serigsg ;(c). Thus we ob-
tain the Maxwell-Garnett type formulas

In Figs. §A) and §B) we show the dependence of,
ande3,onr,, for a rectangular array of perfectly conducting
(e—) elliptical cylinders, with a/b=2, b=1, and
r,=al/100. It can be seen that, in the limit of graphical ac-
curacy, the curves for truncation orders 1, 10, and 20 coin-
cide. Fore?; the dependence or, is almost linear, as the
distance between the cylinders, along thexis, is ~2a
2f (much larger tharr,). Note that asr,—0 the numerical
' results from the Rayleigh identity differ from 1. Actually, as
r, approaches zero we have a rectangular array of perfectly
conducting thin strips of width 2 and therefore, the dielec-
tric constant of the array never equals the dielectric constant
of the matrix. From(53) we obtain

eh=1- 1+e

1—¢

fab
+(Li—La)+ ?[02(0)4')\1,1(0)]
(53

27r%/(ab) . 2
2—15[05(0)+ Ny4(r1)] b

=1.000 628. (55

r
a

eT =1+ +r

; In contrast with this result, for a rectangular array of per-
b X fectly conducting circular cylinderg;7;— 1 as the radius of
the cylinders tends to zeffsee Fig. BA)].

U The dielectric constant},, for the incident field along

they axis, exhibits a similar behavior for a rectangular array
of perfectly conducting elliptical cylinders and a rectangular
array of perfectly conducting circular cylinders, of radius
r,. Even the Maxwell-Garnett type formu(&4) gives high
values ofe3, when the ellipses are close to touching along

FIG. 4. An ellipse elongated along theaxis, inside the unit they axis. The maximum values aof;, are well approxi-
cell, for a=5, b=1, r,=a/50, andr,<b/2. The area fraction is mated if we consider a series of capacitors alongytleis
f~/100. Here, we also havg < <r, so thatc<b/2. [5,27].
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FIG. 6. The components of the dielectric tensdy (A) and

FIG. 5. The components of the dielectric tensdi (A) and %, (B), as functions ofr,, for different truncation orderéN) of
&3, (B), as functions ofr,, for different truncation orderéN) of  (8) and(9), for a rectangular array of perfectly conducting elliptical
(8) and(9), for a rectangular array of perfectly conducting elliptical cylinders. The unit cell of the array has the edges5, b=1 and
cylinders. The unit cell of the array has the edges2, b=1 and  the minor semiaxis of the ellipses lig=a/100. We also show the
the minor semiaxis of the ellipses ig=a/100. We also show the  results from the formulas derived by Galeer®®) [18] and Cohen
results from the formulas derived by Galee(@9) [18] and Cohen et al. (47) [20], and the components of the dielectric tensor for the
et al. (47) [20], and the components of the dielectric tensor for therectangular array with perfectly conducting circular cylinders of
rectangular array with perfectly conducting circular cylinders of radiusr, (ACC).
radiusr, (ACC).

V. THE DIELECTRIC TENSOR OF CONCENTRATED
We also show in Figs.(®) and §B) the numerical results COMPOSITES

Obtained from the MaXWe”'Garnett type fOI’mu|aS derived by In the case Of a Concentrated Composite we may f|nd the
Galeener(39) [18] and Coheret al. (47) [20]. The corre-  dielectric tensor from the equatiofé]
sponding curves fot3, are similar and both differ from the

results obtained from the Rayleigh identity. . B
i ; T =1-27———— (56)
In Figs. 6A) and 6B) we give the results from a similar €11 abEy;’
analysis for a rectangular array of perfectly conducting ellip-
tical cylinders havingr;=a/100 and b=1, but with BY
a/b=5. In this case we have a behavioredf, as a function e5=1-2m ——— (57)

of r, similar to that shown in Fig. ). Now, the curves of

8;2, as a function Oi’z, for different truncation orders are with Bi and Bg obtained by So|ving the linear systems
identical, to the limit of graphical accura¢gee Fig. 6B)],

but they are not so close to the curve corresponding to a 1+e Ly @y’ [\,
rectangular array of perfectly conducting circular cylinders 1-¢ (L=l 1-(L;—Ly?% | fab B,

of radiusr, [compare Fig. 8B) and Fig. %B)]. Again, the
&3, curves from the formulag39) and(47) give completely

+ A, (C)BE=E,cosyd, 4, 58
different results. mzo:dd /m(€)Bn=EoC08yd, 1 (58)
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1+e , (2|_1)/(2|_2)/ a \7 . Note that all the eigenvalues of the matri¢63) are real.
— (Li—L) |2z | 7= B/ If we truncateM®° at some finite ordeN we may reduce
these matrices to the diagonal form by orthogonal similarity
o ) transformations. Denoting the eigenvaluesvtf andM® by
_mzodd Ay m(C)Bn=Eosinyd, s, (59) oy and oy, respectively, the components of the dielectric

tensor are given by the formul#s]
for odd/. Here, as in the case of dilute composites, we have

N
to use the lattice sunr,(0) in (58) anda,(7/2) in (59). Al k1ot (05,2 70
the other lattice sums if59) are identical with the corre- 1 =R
sponding lattice sums frortb8). Note that, of all the coeffi-
cientsA; j(c), as defined in10), only A4 (c) contains the N (092
lattice sumo,. Also none of the coefficients; ;(c) depend £57= 1—2fk71 w'(k) : (72)

on 0.
To evaluate numerically the components of the dielectri

tensor we introduce the variables Here, vi, andv?, represent the first component of tkeh

eigenvector ofM® and M°, respectively. Numerically, we
- have to reduce the initial real symmetric matrix to tridiagonal

_ _ 2
Be— Eqcosy \/1 (Li—Ly)™ fab Qe 60)  form by Householder's algorithm. Then we may use the QL
"“on (2L)"(2L)" \ " algorithm with implicit shifts to find the eigenvalues of the
reduced matri{28]. In practice, for high truncation orders
, Egsiny 1—(L;—Ly)?[fab\" . N this method proved to be more stable than the method of
Bh= (2Lo)"(2L,)" —1 Qp, (61) solving (62) and (63) by direct inversion of{67).
Vn 1 2 & The components of the dielectric tensor satisfy Keller's
so that the system&8) and (59) may be written in the ma- theorem(30]
trix form ei(e)es(lle)=1. (72
[D*+W]Q*=U, 62 This property is a consequence of the algebraic structure of
the linear system$62) and (63), and it is true for arbitrary
[D°—W]Q°=U, (63)

truncation orderdN. Thus in checking numerical results Eq.
(72) represents only a necessary condition, not a sufficient
S‘condition[S]. Note thatall the formulas(39), (44) and(45),
1+ and (47) satisfy Keller's theorem.
§/=1—+(L1—L2)/, (64) The Rayleigh identitie$62) and (63) may be used for a
- limited range of area fractions, for whia<b/2. Under this
restriction, by using the Rayleigh method in the case of a
0 21"'_8_“_ —L,) (65) rectangular array of perfectly conducting elliptical cylinders,
1-e Y TP with r,/r,=a/b=2, we have obtained the agreement with
the results of LYy29] (all four figures given being in agree-
U is a vector with only one nonzero componentmeny.

(up=+ryry) and the matrixV has the elements If the aspect ratio of the inclusions is equal to the ratio of
~ the edges of the unit cell, and
W, m=A, m(c) \/%

X[1=(L1—Lp)* 1[1-(L1—Lp)"M].  (66)

whereD®° are diagonal matrices with the nonzero element:

/+m

ry+r,
2

2-2-17, 73

)

. ] ) . then we may use the Rayleigh identiti®&) and(63) for the

If the dielectric constant of the cylinders)is real, then the \yhole range of area fractions<0f < 7r/4, from a dilute non-

matrices critical compositgwith the inclusions having a smal) to a
MEO— DO+ W 6 concentrated composite when the inclusions tend to touching

- - (67) simultaneously in both directions, along tRkeandy axes.

. . *

are real and symmetric. By truncating the linear syst&@gs Thus,*ln Figs. ?A? and {B) we shqw the behavior ofy,

and (63) at some finite ordeN, and solving for the un- and e5,, as functions of area fra_ct_loh, for_ a rectangular_

knowns Q®°, we obtain the components of the dielectric 272 of perfectly conducting elliptical cylinders. The l_mlt

tensor from the equations cell of the array has the edges- 2 andb=1 . The semi-
axes of the cross sections of the cylinders are

for 1/2
81*1:1—2(%) Q3. (68 ri=avfla, ry,=byflm. (74
1 For different truncation orders of the linear syste(®2) and
X —1-2 f_7T Q° 69) (63), the corresponding curves differ significantly for
22 ab v f=0.5. A high truncation orderN=20) is necessary to
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35

FIG. 7. The components of the dielectric tensdy (A) and FIG. 8. The_components of t.he dielectric tensdy (A) and
e%, (B), as functions of area fractiorf), for different truncation €32 (B), as functions of area fractiorf, for a rectangular array of
orders(N) of (62) and (63), for a rectangular array of perfectly perfectly conducting elliptical cylinderg¢solid curveg and for a
conducting elliptical cylinders. The unit cell of the array has thesduare array of perfectly conducting circular cylindédashed
edgesa=+2, b=1 and the aspect ratio of the ellipses is curve3. The unit cell of the rectangular array has the edges
r,/r,=alb. We also show the components of the dielectric tensor2= V2, b=1 and the aspect ratio of the ellipses jgr,=a/b. The
for the rectangular array with perfectly conducting circular cylin- unit cell of the square array has the edfje 1. In both cases we
ders(ACC). The vertical solid line marks the maximum area frac- have used a truncation ordiir=40.
tion f = /4.

limit of graphical accuracywith the dielectric constant for

show the divergence ot1; and &3, in the vicinity of  the square array. This means that all these quantities are
f<m/4, where the cylinders are close to touching. determined by the relative gap between the inclusians (

We also show in Figs.(A) and 7B) the components of andg, for the rectangular array, argifor the square array
the dielectric tensor for the same rectangular arfay{,  Thus for elliptical cylinders in a rectangular array we have
a=/2) but with perfectly conducting circular cylinders of
radius r,=+/fab/w. The corresponding curves stop at a-2r, r
r,<b/2, when the cylinders are close to touching along the Ox= =1-2—, (75
y axis [maximum area fractiorf = 7/(4+/2)~0.555. For a a
such a composite5,—x asr,—b/2 [see Fig. B)], while
¥, has a finite valu¢see Fig. 7A)]. _b—=2r; r

In Figs. §A) and 8B) we compare the components of the W="pH T o
dielectric tensor for aectangular arrayof perfectly conduct-
ing elliptical cylinders and the dielectric constant dguare
array of perfectly conducting circular cylinders. The unit cell
of the rectangular array has the edges\2 andb=1, and
the semiaxes of the ellipses are given @). The square
array has the edge of the unit cdi=1 and the radius of the
c_ylindsrs is gil/en byr =d+/f/ar. As functions of area frac- 9= 1—2£=1—2\/f/_77. 77
tion e, and €%, for the rectangular array coincidén the d

(76)

wherer,/a=r,/b=f/m, so thatg,=g,. For circular cyl-
inders in a square array the relative gap is the same along the
X andy axes
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as : : , , , : — while for the boundary conditions we use elliptical coordi-
nates. By means of our technique we have analyzed numeri-
A) cally and analytically three types of composites: dilute non-
S critical, dilute critical, and concentrated. For dilute
noncritical and dilute critical composites we have obtained
2sf 1 different Maxwell-Garnett type formulas. Note that our di-
- = pole formula for dilute critical composites works well even
when |e*|>1. Previous asymptotic analysis of composites
has relied on methods other than the application oflRow or-
der Rayleigh identities.
151 - The hybrid technique is limited by geometrical con-
straints, so that it may be applied only for a limited range of
area fractions. Even with these limitations, the Rayleigh
method represents an excellent mathematical formalism for
f analytical studies. In future work we will develop a method
in which both the lattice sums and the boundary conditions
as : : : : : . — are represented in the same coordinate system. We will also
attempt to remove the restriction that the axes of the ellipses
(B) ya and of the array coincide.
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; . . s . s : - APPENDIX A: POTENTIAL EXPANSIONS

f Expressiong3) and (4) for the potential outside and in-
side the cylinder differ from the corresponding potential ex-
pansions used by Morse and Feshbgzd]. The coefficients

FIG. 9. Th f the dielectri A . L -
G. 9. The components of the dielectric tensdj (A) and have been chosen so that, in the limit: 0, when the ellipse

€3, (B), as functions of area fractiorf), for a rectangular array of . f di ircle th ial takes th I
elliptical cylinders(solid curve$ and for a square array of circular Is transformed Into a circle, the potential takes the usual form

cylinders (dashed curves The relative dielectric constant of the in polar coordinates. This form is obtained by means of the

inclusions ise=5. The unit cell of the rectangular array has the limits [22]

edgesa=+2, b=1 and the aspect ratio of the ellipses is

r,/r,=alb. The unit cell of the square array has the edgel. In lim Ee“=r lim Eefﬂ=0 lim Ee*uzl
both cases we have used a truncation oider40. cs0 " em0 © e r’

M M—> M
Consequently, the relative gap is the same alongxtlaed (A1)
y axes for both systems, and therefore the dielectric consta
is similar for both directions and systems.

In Figs. 9A) and 9B) we compare the components of the
dielectric tensor for a rectangular array of elliptical cylinders
and the dielectric constant of a square array of circular cyl- o
inders. The geometry qf the arrays is thg same as in Fig. 8, Ve(r, @)= 2AS+BE+ 2 {[ASr"+BEr "cogne)
but the relative dielectric constant of the inclusiong is5. n=1
It can be seen that, due to the particular value of the aspect Oun 1 DO
ratio of the inclusions and the geometry of the rectangular +[Anr"+ Byr Msin(ne);, (A2)
array, there are quite small differences betwegpande3, . )
for the rectangular array and the dielectric constant of thdn the matrix
square array, over the whole range of area fractions
o<f<ml4.

%herer is the distance to the origin in polar coordinates.
Also, the coordinated becomes the polar angle. Conse-
quently, from(3) and (4) we have

t=rgy), and

Vi(u,@)=2CE+ >, [C8r"cogne)+CorMsin(ne)],
n=1
VI. CONCLUSIONS (A3)

We have extended the Rayleigh methddifor inclusions inside the cylinder (&r=rg). Therefore the coefficients
with noncircular boundaries. This extension is a hybrid techA7°, B5° and C3° have the same dimension in elliptical
nique: the lattice sums are evaluated in polar coordinategoordinates as in polar coordinates.
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APPENDIX B: THE GREEN’'S FUNCTION 7—7.—7 1 { n
—In#=—iw+2 = (B10)
We consider the problem of a uniform electric field ap- zZ, —1 N '
plied to a periodic array of elliptical cylinders. The centers of
the cylinders are specified by the array vectors so that
Rp=p1&+ P&, P=(p1,pp) 2, (B1) e
> Gy(zizo)=ReX, —oy, (B1Y)
whereg, andg, represent the fundamental translation vectors p#0 n=1 N
of the array. where we have introduced the lattice sums
The Green'’s function for our problem is the solution of
the Poisson equation 1\n
on= (Z— (B12)
p#0
V2G(r;rg)=—2m>, 8(r—ro—Ry,), (B2) P
P For any periodic array, defined by(B1), which
VR,=(R,,¢,) also contains the vector
and has the form p p'¥p i .
R,=(Rp,¢p+ m), the lattice sumgB12) satisfy the rela-
|r_r0_Rp| tion
G(rirg)=—Injr—ro|— > InR—. (B3)
p#0 p on=(—1)"0,. (B13)

By introducing the representation in the complex plane of therherefore, in this case, only the lattice sums of even order
vectors involved inB3), the Green'’s function takes the form gppear inB11). The sume, is conditionally convergent and
depends on the direction of the applied fi¢#d5,11,12,14
G(Z,29)=Gy(Z;20) + >, Gpl(z20), (B4)  Therefore, we will denote it byr,(). The sums of order
#0 n=3 are absolutely convergent.
Then by means of the binomial expansion

where
{"=c"(coslw— costwg)"
Go(z;2p) = —Re IN(z—2y), (BS)
c\"& (n\/n
7—7.—7 :(_> 2 ( )( )(_1)k+/e(k+/—n)we(k—/)wo
Gp(z,29)=—Re In%. (B6) 2] k720 \k/\/
’ (B14)

Now, we consider the transform to elliptical coordinates
defined byz=ccostw, with w= x+i 6. In Cartesian coordi-
nates, this transform is given by Eq4) and (2). We also c
Fa\ﬁe Zo=ccoshw, and, by substituting inB5), we obtain G(Mﬁiﬂoﬁo):—mz—ﬂ
21

we may recast the Green’s functioB3) in the form

—In(z—zy) = —In(ccostw—ccostwy)

—nw

coshinwp), +sinh(nug)sin(nfg)sin(n )]

(B7) +Re{2< ) kZo(D(;)

X ( _ 1)k+/e(k+/—n)we(k—/)wo

C oo
—Inz—w+2,
2 A=1

for |w|>|wg|. Hence foru>u,y, we have

} . (B15)

c
Go(z;29) = _lnE_’“

Note that this series expansion of the Green’'s function is
valid only inside the unit cell, wherh—r0|<Rp, Vp#0,
and foru> uq. Hence, ifuq defines the ellipseQ), then the
series expansiofiB15) is valid in the region between the
ellipse (C) and the boundary of the unit céfiee Fig. 1. The
Green'’s function83) is unique to within a constant so that,
we can remove froniB15) the constant term la(2).
If the array has the property thatR,=(R,,¢,) it also
1Z]<|z,l, Vp+#0 (B9) contains the vecth;,= (Rp,— ¢p), then the lattice sums are
real. An example of such an array is the rectangular array
we have with the fundamental translation vectoes=(a,0) and

+sinh(nug)sin(néy)sin(né)]. (B8)

To obtain the series expansion ¢B6) we denote by
{=z—1zq. If £ is restricted to the unit cell, so that
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&=(0,b), wherea andb are the sides of the unit cell. Thus Here to simplify the formulas we have omitted the arguments
the representation in the complex plane of the array vectoref Ve and G in integrals. Also, the integration variables in

(B1) has the form the second integral correspond to the ellip€3.(By means
. ) of the periodicity properties of . andG we find that the first
Z,=piatipab, p=(p1,p2) e Z”. (B16) integral in(C1), along the boundary of the unit cell, gives the

- potential of the applied field
Note that whera>b the condition(B9) becomes

Vo(u,0)=Egc(coshucosdcosy+ sinhusingsiny).

|¢]<min(|zp|) =b. (B17) (€2
Also, the Green's functioriB15) takes the form In the second integral, we change the direction of the normal,
] B exterior to the ellipse, and use the element of arc length
G, 0;po,00) =~ along the ellipsg22]

d/o=h,d, h, =cysinffus+sindy. (C3

The normal derivative on the ellipse has the form

+sinh(nug)sin(ndg)sin(n o) ] dlang= (1, )dldu,, so that(C1) takes the form
» 2
L oo En 2n)(2n 1 (2e) Ve G
=h\2 2ny7=o0 \ k / Ve(Maa):Vo(M-a)—EJO (G[?_M_Vea_luo)deo-
X (— 1)<+ gt /=20 gtk ol cod (k (CH

By substituting(3) for V. and (B18) for the Green’s func-

+/—2n)6lcod (k—7) 6] —sin (k+/ tion, in the integral in(C4) we have

—2n)0]sin (k—7)6]}. (B18) 1 2 e
Thg Grgen’s func_tior@BlS) is doubly periodic and fully fac- EJO G~ (9,@0 ea,uo dfo
torized in the variableg, 6, uq, andé,.
2 n
_ e O - -n
APPENDIX C: THE GREEN'S THEOREM = %d [Bncosn‘g”an'”(”e)]( c) e
In (5) the potentialV, is the general solution of the ©  2n- 2n—m
i . - 2n 2n
Laplace equation and the Green’s functi@nsatisfies(B2). +> E 2 , — o,
Hence we have modd n=m /=0 /+m/\ /] 2n
Ve(,Uua):2_§ ( (9n e&n )d/
N —B%sin(2/+m—2n)gle? Tm=2Muy (C5)

ple
G— —V—) d/,. (CD

+ R
2m ( dng  dng With (3) and (C5) substituted in(C4) we obtain(6).
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